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Introduction

Evolution/Trends

Wireless, circuit/optical and packet switching networks → Information exchange networks
(switching, storage, processing)

Node-centric (network as collection of nodes) → Network-centric (realize function)

Physical resources (memory & CPU, link/node capacity) with fixed allocation → Logical
resources (abstraction) with dynamic allocation

Open-loop, static, centralized, and dependent → Closed-loop (feedback, adaptive,
model-reference), dynamic, distributed/multi-agent and autonomous control

⇒ Specialized (network design(access/aggregation), multicommodity flow routing,
placement/location, etc.) → Combined studies
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Problem Classes

1. Positioning/Location and Dimensioning
2. Configuring and Provisioning

Traditional applications
3. Planning and Scheduling

. . . Not only about CAPEX and OPEX

4. Protocol and System Design (early phases)
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Main trends: 3R

Reliability (time or space)

Probabilistic parameters and model

Invalidate independence property or balance scale-oriented decisions

Routing

Distance functions/metrics beyond graph distance, e.g., load, delay

Multi-level (partition), multi-period (dynamics, evolution), multi-layer (beyond overlays)

Coupling constraints, e.g., network × routing decisions

Robustness → Robust optimization

Parameter space (variability) → Construction (automatic) of uncertainty sets
(machine/stat. learning)

Computational complexity tradeoff

Original Problem LP MILP QCQP SOCP
Polyhedral Set LP MILP MINLP MINLP
Ellipsoidal Set SOCP MISOCP SDP SDP
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Challenging Problems

1. (Reliable) capacitated Facility Location Problem (cFLP) × Multicommodity Flow
Routing (MCF) → cFLRP

⇒ Applicability: information networks

2. Hub-Location Problem (HLP) × Location-Routing Problem (LRP) → HLRP

⇒ Applicability: virtualization/cloud networks

3. Mixed-Integer Programming Model for the Multi-Stage Hub Location Problem →
mHLRP

⇒ Applicability: multi-tenant virtualization/cloud networks

4. Robust cFLP (variant of)

⇒ Applicability: cooperative monitoring point placement and dimensioning

5. Multi-Period Multicommodity Capacitated Network Design and Routing Problem

⇒ Applicability: multi-agent network control (towards self-optimization)
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Facility Location: problems

Objectives to locate facilities

1. Median models:
Minimize transportation costs between clients and facilities

p-median problem: locate p facilities such that sum of distances between vertices and
nearest located facility is minimized
p-center problem: locate p facilities such that maximum distance is minimized

2. Covering models:
If facility located within a specified proximity (neighborhood) of demand
point/vertex then demand is covered

Set covering: minimize number of facilities needed to cover all clients
Maximum covering: maximize covered clients with a particular number of facilities

3. Fixed charge location models:
minimize total facility installation/opening and transportation costs
→ Tradeoff between fixed operating and variable delivery cost
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Overall Picture
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Facility Location: Formulation

Input data and Parameters
Graph G = (V, E) where vertex set V represents

- Demand originating points I ⊆ V
- Set of potential facility locations (sites) J ⊆ V

∀j ∈ J of finite capacity bj

- Facility opening cost ϕj

- Assignment cost κij (allocation of demand ai to opened facility j)
- Distance d(i , j) = δij from demand point i to location j

Variables
Binary variable yj = 1 if facility of capacity bj opened at location j (0 otherwise)

Real variable xij ≥ 0: fraction of demand ai satisfied by facility (opened at location) j

Task
Select a subset of potential locations where to install/open a facility and assign every
client i with known demand ai to single or to (sub)set of open facilities without
exceeding their capacity bj (capacitated)
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Facility Location Problem: MILP Formulation

Find i) set of locations to install/open facilities (location) and ii) assignment of demands
to open facilities (allocation) that minimize

- Opening/installation cost of selected facilities:
∑

j∈J ϕjyj

- Customer demand supplying cost at each facility:
∑

i∈I
∑

j∈J κijxij

- Connection cost of each demand to subset of selected facilities:
∑

i∈I
∑

j∈J δijxij

min
∑
j∈J

ϕjyj +
∑
i∈I

∑
j∈J

κijxij +
∑
i∈I

∑
j∈J

δijxij (1)

subject to:∑
j∈J

xij = 1 i ∈ I (2)

xij ≤ yj i ∈ I, j ∈ J (3)∑
i∈I

aixij ≤ bjyj j ∈ J (4)∑
i∈I

ai ≤
∑
j∈J

bjyj (5)

xij ∈ [0, 1](orxij ∈ {0, 1}) i ∈ I, j ∈ J (6)
yj ∈ {0, 1} j ∈ J (7)
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Model Properties (1)

Properties
1 Hard-capacitated: only one facility may be installed at each location j ∈ J with finite

capacity bj

2 Multi-source: each demand ai may be served by multiple sources (facilities j ∈ J )
single-source: each client demand served by a single facility

3 Multi-product: each opened facility j offers multiple (k) product types
product: data object - product type: data object class
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multi-product Facility Location: MILP Formulation

min
∑
j∈J

ϕjyj +
∑
i∈I

∑
j∈J

∑
k∈K

κijkxijk +
∑
i∈I

∑
j∈J

∑
k∈K

δijxijk (8)

subject to:∑
j∈J

xijk = 1 i ∈ I, k ∈ K (9)

zjk ≤ yj j ∈ J , k ∈ K (10)
xijk ≤ zjk i ∈ I, j ∈ J , k ∈ K (11)∑
i∈I

∑
k∈K

aikxijk ≤ bjyj j ∈ J (12)∑
i∈I

∑
k∈K

aik ≤
∑
j∈J

bjyj (13)

xijk ∈ [0, 1](orxijk ∈ {0, 1}) i ∈ I, j ∈ J , k ∈ K (14)
yj ∈ {0, 1} j ∈ J (15)
zjk ∈ {0, 1} j ∈ J , k ∈ K (16)
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Model Properties (2)

Properties
4 Symmetric transportation cost: optimal solution to client-to-server problem ≡ optimal

solution to server-to-client problem
5 Shared-capacity: installed capacity shared among product types hosted by each facility

(no dedicated capacity per-product type)
6 Digital goods: single copy of each object hosted at installed facilities even if assigned to

multiple customer demands ai
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multi-digital products Facility Location: Formulation

min
∑
j∈V

ϕjyj +
∑
i∈I

∑
j∈J

∑
k∈K

κijkxijk +
∑
i∈I

∑
j∈J

∑
k∈K

δijxijk (17)

subject to:∑
j∈J

xijk = 1 i ∈ I, k ∈ K (18)

zjk ≤ yj j ∈ J , k ∈ K (19)
xijk ≤ zjk i ∈ I, j ∈ J , k ∈ K (20)∑
i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤ bjyj j ∈ J (21)

∑
i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤
∑
j∈J

bjyj (22)

xijk ∈ [0, 1] i ∈ I, j ∈ J , k ∈ K (23)
yj ∈ {0, 1} j ∈ J (24)
zjk ∈ {0, 1} j ∈ J , k ∈ K (25)
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Facility Location-Routing Problem (1)

When routing topology determined endogenously, more effective to change routing
decisions instead of locating additional facilities (or increase capacity on installed
facilities) → Coupled location and routing decisions

Main idea

Combination of multi-source multi-product capacitated facility location
(MSMP-cFLP) for digital goods with flow routing: MSMP-cFLRP

Modeled and solved independently → Modeled and solved simultaneously
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Facility Location-Routing Problem (2)

Facility location × Flow routing → Facility Location-Routing
Conventional cFLP: models cost of allocating demand ai originated by a given
client i independently of other demands aj , ∀j ∈ I, i 6= j

→ Facility location aggregates demands

Location-Routing Problem (LRP): combines cFLP with routing decisions removes
allocation independence property
→ Strongly interrelated location and routing decisions

- Multiple demands may or not be served simultaneously by sharing (some) edges
along (partially) common routing path

- Allocation (transportation, routing) cost not limited to graph distance
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Facility Location-Routing Problem (3)

Methods
Sequential: minimize location and allocation cost (cFLP) then routing cost
(min-cost multicommodity flow problem)

Simultaneous: minimize location, allocation and routing cost (MSMP-cFLRP)

Tradeoff: solution quality vs. computational complexity

Computational complexity dependence
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Input: Data and Parameters

Data
Finite graph G = (V, E) with edge set E and vertex set V

- Set of demand originating points I ⊆ V, |I| = I
- Set of potential facility locations J ⊆ V, |J | = J

Set K (|K| = K): family of products that can be hosted by each facility located at
j ∈ J
Demand set A

- aik : size of requested product of type k ∈ K initiated by demand point i ∈ I ⊆ V
- Total demand over all product types k ∈ K: A =

∑
i∈I

∑
k∈K aik

Parameters
bj : capacity of facility opened at location j ∈ J (storage capacity)

quv : nominal capacity of arc (u, v) from node u to v
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Variables and Costs

Variables
Real variable xijk : fraction of demand aik requested by customer demand node i for
product type k satisfied/served by facility j (opened/installed at u ∈ V)
Binary variable yj = 1 if facility j of capacity bj opened/installed at node u ∈ V (0
otherwise)

Binary variable zjk = 1 if product type k provided at (opened) facility j (0 otherwise)

Continuous flow variable fuv,ijk : amount of traffic flowing on arc (u, v) in supply of
customer demand i for product k assigned to opened facility j

Costs
ϕj : cost of opening/installing a facility at site j
→ Facility location cost:

∑
j∈J ϕjyj

κijk : cost of assigning to facility opened at site j the fraction of demand aik issued by
customer demand point i for product k
→ Demand allocation cost:

∑
i∈I

∑
j∈J

∑
k∈K κijkxijk

τuv : cost of routing one unit of traffic along arc (u, v)
→ Traffic routing cost:

∑
(u,v)∈E τuv

∑
i∈I

∑
j∈J

∑
k∈K fuv,ijk
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MIP Formulation

min
∑
j∈J

ϕjyj +
∑
i∈I

∑
j∈J

∑
k∈K

κijkxijk +
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk (26)

subject to:∑
j∈J

xijk = 1 i ∈ I, k ∈ K, aik > 0 (27)

zjk ≤ yj j ∈ J , k ∈ K (28)
xijk ≤ zjk i ∈ I, j ∈ J , k ∈ K (29)∑
i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤ bjyj j ∈ J (30)

∑
i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤
∑
j∈J

bjyj (31)

fuv ,ijk ≤ aikxijk (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (32)∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk ≤ quv (u, v) ∈ E (33)

aikxiik +
∑

v∈V:(i ,v)∈E

∑
j∈J

fiv ,ijk = aik i ∈ I, k ∈ K, i 6= j , aik > 0 (34)

∑
v :(v ,u)∈E

∑
j∈J

fvu,ijk =
∑

v :(u,v)∈E

∑
j∈J

fuv ,ijk + aikxiuk i ∈ I, u ∈ V, k ∈ K, u 6= i (35)

xijk ∈ [0, 1] i ∈ I, j ∈ J , k ∈ K (36)
yj ∈ {0, 1} j ∈ J (37)
zjk ∈ {0, 1} j ∈ J , k ∈ K (38)
fuv ,ijk ≥ 0 (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (39)
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MSMP-cFLRP Constraints (1)

Demand satisfaction constraints: demand aik for product type k issued by each
customer i shall be satisfied:∑

j∈J

xijk = 1, i ∈ I, k ∈ K, aik > 0 (40)

Product availability: product type k available on facility j only if j opened
Forbids assigning products to closed facilities:

zjk ≤ yj , j ∈ J , k ∈ K (41)

Demand fraction xijk satisfiable by facility j only if product k available at j
Forbids delivery from facility j of product type k to demand node i if product type
k unavailable at facility j

xijk ≤ zjk , i ∈ I, j ∈ J , k ∈ K (42)
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MSMP-cFLRP Constraints (2)

Constraints linking MSMP-cFLP and Flow routing problem:

Individual flow constraints on arc (u, v): traffic flow associated to customer i
demand for product type k (aik) directed to facility j along arc (u, v)

fuv,ijk ≤ min(quv , aikxijk), (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (43)

Aggregated flow constraints on arc (u, v): load (sum of traffic flows) on individual
arcs (u, v) ∈ E does not exceed their nominal capacity quv∑

i∈I

∑
j∈J

∑
k∈K

fuv,ijk ≤ quv , (u, v) ∈ E (44)

Flow conservation constraints:

aikxiik +
∑

v :(i,v)∈E

∑
j∈J

fiv,ijk = aik , i ∈ I, k ∈ K, i 6= j , aik > 0 (45)

∑
v :(v,u)∈E

∑
j∈J

fvu,ijk =
∑

v :(u,v)∈E

∑
j∈J

fuv,ijk + xiukaik , i ∈ I, u ∈ V, k ∈ K, u 6= i (46)
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MSMP-cFLRP Constraints (3)

Facility capacity constraints:

For physical goods (canonical cFLP):∑
i∈I

∑
k∈K

aikxijk ≤ bjyj ,∀j ∈ J (47)

For digital goods:

Sum of fractions xijk assigned to opened facility j ∈ J does not exceed its
max. capacity bj
Set of d identical demands (same product type k of size s) assigned to j
consumes s units of facility capacity at j instead of d .s units∑

i∈I

∑
k∈K

aik
xijk∑
`∈L x`jk

≤ bjyj , ∀j ∈ J (48)

where, L(⊆ I) , set of identical demands assigned to the same facility j
(this set is unknown prior to assignment)
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Example (1)

∑
`∈L x`11 =

∑
`∈L x311 + x411 = 1∑

`∈L x`21 =
∑
`∈L x321 + x421 = 0

∑
`∈L x`11 =

∑
`∈L x311 + x411 = 0∑

`∈L x`21 =
∑
`∈L x321 + x421 = 1
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Example (2)

∑
`∈L x`11 =

∑
`∈L x311 + x411 = 1∑

`∈L x`21 =
∑
`∈L x321 + x421 = 1

∑
`∈L x`11 =

∑
`∈L x311 + x411 = 1∑

`∈L x`21 =
∑
`∈L x321 + x421 = 1
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Fractional Constraints (1)

Physical goods model: facility capacity constraints
∑

i∈I
∑

k∈K aikxijk ≤ bjyj

Digital goods model: capacity sharing between digital objects available on opened
facilities leads to fractional term in facility capacity constraints (L ⊆ I)∑

i∗∈I

∑
k∈K

ai∗k
xi∗jk

xi∗jk +
∑
`∈L\{i∗} x`jk

≤ bjyj (49)

- To linearize these constraints: first define a new variable ξjk such that

ξjk =
1

xi∗jk +
∑
`∈L\{i∗} x`jk

(50)

- Condition equivalent to

ξjk

xi∗jk +
∑

`∈L\{i∗}
x`jk

 =
∑
i∗∈L

ξjkxi∗jk = 1 (51)

- In terms of ξjk , facility capacity constraints can then be rewritten as (i∗ → i)∑
i∈I

∑
k∈K

aikξjkxijk ≤ bjyj (52)

∑
i∈L

ξjkxijk = 1 (53)
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Fractional Constraints (2)

Theorem: polynomial mixed term z = x .y (x , binary variable, y , continuous variable
such that L ≤ y ≤ U) can be represented by linear inequalities:

1) Lx ≤ z ≤ Ux
2) y − U(1− x) ≤ z ≤ y − L(1− x)

⇒ Introduce auxiliary variable ζijk = ξjkxijk , where L(= 0) ≤ ξjk ≤ U(= 1), to obtain:∑
i∈I

∑
k∈K

aikζijk ≤ bjyj (54)

∑
i∈L

ζijk = 1 (55)

0 ≤ ζijk ≤ xijk (56)

ξjk − (1− xijk ) ≤ ζijk ≤ ξjk (57)

Linearization
Increases complexity: addition of (I + 1).J.K auxiliary variables ζijk and ξjk together with
(4.I + 1).J.K associated constraints

Works for small-size problems but gap between IP and LP relaxation may become huge
for larger problems

Set L a priori unknown
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Approximation (1)

Facility capacity constraints:
∑

i∈I
∑

k∈K aik
xijk∑
`∈L x`jk

≤ bjyj , ∀j ∈ J

Explicit dependence on product index k in LHS prevents per-product formulation

Capacity sharing among K product types leads to more complex structure than
superposition of K independent constraints

Approximation

Start from facility capacity constraints formulated as for single-product model (K = 1):∑
i∈I ai

xij∑
`∈L x`j

≤ bjyj , j ∈ J

Move denominator out of LHS:
∑

i∈I aixij ≤ bj
∑

i∈L yjxij , j ∈ J

Assume inequality verified for each k independently (dedicated capacity per-product type):∑
i∈I aikxijk ≤ bjk

∑
i∈L yjxijk , j ∈ J , k ∈ K

Re-introduce summation over k (in both members):∑
i∈I

∑
k∈K aikxijk ≤

∑
k∈K(bjk

∑
i∈L yjxijk), j ∈ J

D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 30 / 124



Approximation (1)

Facility capacity constraints:
∑

i∈I
∑

k∈K aik
xijk∑
`∈L x`jk

≤ bjyj , ∀j ∈ J

Explicit dependence on product index k in LHS prevents per-product formulation

Capacity sharing among K product types leads to more complex structure than
superposition of K independent constraints

Approximation

Start from facility capacity constraints formulated as for single-product model (K = 1):∑
i∈I ai

xij∑
`∈L x`j

≤ bjyj , j ∈ J

Move denominator out of LHS:
∑

i∈I aixij ≤ bj
∑

i∈L yjxij , j ∈ J

Assume inequality verified for each k independently (dedicated capacity per-product type):∑
i∈I aikxijk ≤ bjk

∑
i∈L yjxijk , j ∈ J , k ∈ K

Re-introduce summation over k (in both members):∑
i∈I

∑
k∈K aikxijk ≤

∑
k∈K(bjk

∑
i∈L yjxijk), j ∈ J

D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 30 / 124



Approximation (2)

Transformation removes fractional term (LHS) but introduces sum over individual
product capacity (bjk)

⇒ Question: Gain from this transformation ?

Assumption: product types homogeneously distributed among installed facilities
→ bj = Kbjk (remove dependence on per-product capacity distribution)

⇒ Inequalities for facility capacity constraints (80) when L → I:
identical demands assigned to same facility j∑

i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj

∑
i∈I

∑
k∈K

xijk , ∀j ∈ J (58)

⇒ Inequalities for facility capacity constraints (80) when |L| → 1:
each product type-size pair assigned to single demand∑

i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj

∑
k∈K

x∗jk ,∀j ∈ J (59)
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Approximation (3)

Scenario: Set of disjoint demands wrt product type k of same size s: pairs
(k1, s), (k2, s), . . . , (kK , s)
With K = I pairs (one per demand point i): total capacity required = K .s

If bj = s and facility installation cost low enough to steer local assignment
Then demands initiated locally should be assigned locally
⇒ Routing cost should be zero

Not verified because per-facility capacity bj divided by factor K
⇒ Capacity required on at least one installed facility multiplied by factor K(= I )
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Additional Constraints

Consider simplified objective:

min
∑
j∈J

ϕjyj +
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv,ijk (60)

with additional constraints:

Aggregated capacity constraints
∑

i∈I
∑

k∈K aik ≤ 1
K

∑
j bjyj

∑
i

∑
k xijk

Individual fractions remain within [0, 1], i.e., 0 ≤ xijk ≤ 1

At least one facility shall be opened
∑

j∈J yj ≥ 1
Particular case (bj = b,∀j): divide total demand size by per-facility capacity bj such that
min.number of facilities ≤

∑
j∈J yj

All product types covered by installed facilities
∑

j∈J
∑

k∈K zjk ≥ K
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MSMP-cFLRP: MIP Formulation

min
∑
j∈J

ϕjyj +
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk (61)

subject to:∑
j∈J

xijk = 1 i ∈ I, k ∈ K (62)

zjk ≤ yj j ∈ J , k ∈ K (63)
xijk ≤ zjk i ∈ I, j ∈ J , k ∈ K (64)∑
i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj

∑
i∈I

∑
k∈K

xijk j ∈ J (65)

∑
i∈I

∑
k∈K

aik ≤
1
K

∑
j∈J

bjyj
∑
i∈I

∑
k∈K

xijk (66)

fuv ,ijk ≤ aikxijk (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (67)∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk ≤ quv (u, v) ∈ E (68)

aikxiik +
∑

v∈V:(i ,v)∈E

∑
j∈J

fiv ,ijk = aik i ∈ I, k ∈ K, i 6= j , aik > 0 (69)

∑
v :(v ,u)∈E

∑
j∈J

fvu,ijk =
∑

v :(u,v)∈E

∑
j∈J

fuv ,ijk + aikxiuk i ∈ I, u ∈ V, k ∈ K, u 6= i (70)

xijk ∈ [0, 1] i ∈ I, j ∈ J , k ∈ K (71)
yj ∈ {0, 1} j ∈ J (72)
zjk ∈ {0, 1} j ∈ J , k ∈ K (73)
fuv ,ijk ≥ 0 (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (74)

D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 34 / 124



Performance benchmark

Goals
Computational performance evaluation (computational time and solution quality) using
CPLEX 12.6.3

Target computational time upper bound of 900s (average roll-out time)

Method
Generate set of 12 instances with O(1000) demands (at least O(100) demands per node)

Network topology of 25 nodes and 90 arcs

Tuning facility capacity and associated costs

Execution
Concurrent (Dual simplex and Barrier algorithm) to solve root relaxation (rootalg = 6)

Concurrent (Dual simplex and Barrier algorithm) to solve other MIP subproblems after
initial relaxation (nodealg = 6)

Balance feasibility and optimality (mipemphasis = 1)
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Performance benchmark: results

Scenario Root Sol. time Root Proc. time (s) Total Proc. time (s) Final Gap (%)
sc-0k75-0k75 84 346 346 0.00

sc-1k-1k 80 340 340 0.00
sc-1k2-1k2 86 346 346 0.00
sc-1k5-1k5 124 383 383 0.00
sc-1k8-1k8 132 392 392 0.00
sc-2k-2k 209 754 754 0.00

sc-2k25-2k25 589 1329 2099 0.00
sc-3k-3k 140 2375 3893 0.00

sc-3k6-3k6 1950 3808 4978 0.00
sc-4k5-4k5 2011 4935 4935 0.00
sc-6k-6k 3514 7310 9782 0.00
sc-9k-9k 5307 9332 9332 0.00

Avg 1101 2461 3048 0.00
Stdev 1660 3019 3744 0.00

Scenario Root Sol. time Root Proc. time (s) Total Proc. time (s) Final Gap (%)
sc-0k75-0k75 79 336 336 0.00

sc-1k-2k 84 342 342 0.00
sc-1k2-2k 85 343 343 0.00
sc-1k5-2k 128 386 386 0.00
sc-1k8-2k 130 386 386 0.00
sc-2k-2k 207 733 733 0.00

sc-2k25-2k 572 1350 1911 0.00
sc-3k-2k 1390 2407 3581 0.00
sc-3k6-2k 2091 3253 3253 0.00
sc-4k5-2k 1493 2691 2691 0.00
sc-6k-2k 1034 2055 2055 0.00
sc-9k-2k 1047 1823 1823 0.00

Avg 648 1265 1399 0.00
Stdev 688 1060 1215 0.00
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Evaluation instances: topologies and demands

Topologies (SNDLib database)

Topology Nodes Links Min,Max,Avg
Degree Diameter

abilene 12 15 1;4;2.50 3
atlanta 15 22 2;4;2.93 3
france 25 45 2;10;3.60 8
geant 22 36 2;8;3.27 5

germany50 50 88 2;5;3.52 9
india35 35 80 2;9;4.57 7
newyork 16 49 2;11;6.12 2
norway 27 51 2;6;3.78 7

Links capacity and cost from SNDlib database

Demands
Produce set of ten problem instances with 3000 demands
Demands generated using following distributions:

- Demand size: Pareto distribution commonly used to model file size
f (x) =

αxαm
xα+1 , x ≥ xm

- Demand frequence: Generalized Zipf-Mandelbrot distribution (frequency of
event occurrence inversely proportional to its rank)
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Results: Unified vs. Overlay

Overlay (sequential): minimize location and allocation cost (cFLP) then routing
cost (MMCF)

Unified (simultaneous): minimize location, allocation and routing cost
(MSMP-cFLRP)
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Results: Number of Facilities vs. (Per-)Facility Capacity
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Results: Routing Cost vs. Facility Charge
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Deeper look (1): Digital goods model (atlanta)
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Deeper look (2): Physical goods model (atlanta)
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Reliable Facility Location

Facility protection: when choosing a location for a facility, another facility is selected
which will serve as its backup when the primary facility fails
⇒ Demands assigned to same primary facility have same backup facility

Demand protection: when choosing an allocation for a demand, another facility is
assigned which will serve as its backup when the primary facility fails
⇒ Demands assigned to same primary facility may have different backup facilities
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Reliable Facility Location ((c)RFLP) vs. MSMP-cFLRP

Demands protection: RFLP (Snyder2005) and capacitated RFLP (Yu2015)

Demands rerouting: MSMP-cFLRP
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Demand protection: capacitated Reliable Fixed Charge Location Problem (cRFLP)

Reliability based on levels assignments strategy: r (r = 0, . . . , J − 1) level at
which a facility serves a given customer demand

- r=0: primary assignment
- r=1: first backup
- and so on

If customer i demand level−r assigned facility failed
then level−(r + 1) assigned facility serves this demand as backup

Objective function:

∑
j∈J

ϕjyj +
∑
i∈I

∑
j∈J

∑
k∈K

J−1∑
r=0

dijaijkxijkrq
r (1− q) (75)

First term: total fixed installation cost
Second term: expected transport cost where facility j serves customer i demand if

- its lower-level assigned facilities all disrupted: occurrence probability qr

- and facility j still available: occurrence probability 1− q
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Reliable MSMP-cFLRP: MIP Formulation

min
∑
j∈J

ϕjyj +
∑

(u,v)∈E

τuv
∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk (76)

subject to:∑
j∈J

xijk = 1 i ∈ I, k ∈ K (77)

zjk ≤ yj(1− qj) j ∈ J , k ∈ K (78)
xijk ≤ zjk i ∈ I, j ∈ J , k ∈ K (79)∑
i∈I

∑
k∈K

aikxijk ≤
1
K
bjyj(1− qj)

∑
i∈I

∑
k∈K

xijk j ∈ J (80)

∑
i∈I

∑
k∈K

aik ≤
1
K

∑
j∈J

bjyj(1− qj)
∑
i∈I

∑
k∈K

xijk (81)

fuv ,ijk ≤ aikxijk (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (82)∑
i∈I

∑
j∈J

∑
k∈K

fuv ,ijk ≤ quv (u, v) ∈ E (83)

aikxiik +
∑

v∈V:(i ,v)∈E

∑
j∈J

fiv ,ijk = aik i ∈ I, k ∈ K, i 6= j , aik > 0 (84)

∑
v :(v ,u)∈E

∑
j∈J

fvu,ijk =
∑

v :(u,v)∈E

∑
j∈J

fuv ,ijk + aikxiuk i ∈ I, u ∈ V, k ∈ K, u 6= i (85)

xijk ∈ [0, 1] i ∈ I, j ∈ J , k ∈ K (86)
yj ∈ {0, 1} j ∈ J (87)
zjk ∈ {0, 1} j ∈ J , k ∈ K (88)
fuv ,ijk ≥ 0 (u, v) ∈ E , i ∈ I, j ∈ J , k ∈ K (89)
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Results: Demand Protection (cRFLP) vs. Rerouting (MSMP-cFLRP)
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Results: Demand Protection (cRFLP) vs. Rerouting (MSMP-cFLRP)

Main observations (france)

As facility capacity increases, total cost (R) of re-routing strategy remains lower
than total cost (P) of protection strategy (two levels of protection)

- Higher allocation cost required by cRFLP compared to MSMP-cFLRP because of
smaller number of installed facilities

- Higher routing cost required by MSMP-cFLRP because of load-dependent routing
cost instead of graph distance cost

Highest gain (36%) obtained when tradeoff between spatial distribution of facility
capacity (over 8 locations) and routing cost to access them reaches its optimal
value

Implication: routing metric would require accounting from facility load distribution
and data availability
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Summary

Summary
Propose a mixed-integer formulation for combined multi-source multi-product
capacitated facility location-flow routing problem (MSMP-cFLFRP)

Our formulation accounts for specifics of digital object storage and supply
Note: known formulations translate multi-product problem as single-commodity
problem solved separately for each product

Approximation of fractional constraints enables to solve to optimality small- to
medium-size instances with an order of thousands of demands

Exploitation in demand assignment re-routing scheme (comparison to demand
protection scheme)
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Future Research Work

Method/Computational Level

Improve computation method to avoid excessive computation time on (very) large
network instances with order of 10k demands

Formulation/Modeling Level

Quadratic assignment (instead of linear assignment): xijk → x2
ijk

Multi-period formulation (account for demand dynamics)
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Introduction: Hub Location Routing Problem (HLRP)

Hub Location Problem (HLP)
Undirected graph G with node set V with flow between every pair (u, v) ∈ V of nodes

Subset of central nodes acting as transshipment nodes (hubs); other (terminal or
non-hub) nodes connected with an arc (spoke) starlike with one of the hubs

Flows (u, v) travel directly if both nodes are hubs (u, v ∈ H) or if one node is a hub and
both are connected through a spoke
Otherwise flow travels via at least another hub h
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Introduction: Hub Location Routing Problem (HLRP)

Hub functions
Connect demand points i ∈ I
Demand ai de/multiplexing (first level)

Logical composition and/or aggregation of physical of resources from facilities (second
level) of finite capacity bj
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Model (1)

Objective: quantitatively assess the tradeoffs between resource abstraction,
(al)location, and routing
Model: Combines HLP for demands allocation and cFLP (together with flow
routing) for their distribution to multiple facilities

- Hubs equipped with resource abstraction and aggregation functionality, may split
incoming demands over multiple facilities

- Individual demands di are assigned to single hub h offering logical capacity ch
- Single hub h may segment demands depending on capacity distribution and
consumption at each facility

Example: processing of incoming client demands at a given hub h (red circle) in
comparison to cFLP model with single-assignment
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Model (2)

Single hub-level: no inter-hub flows but instead hub-to-facility flows

Hard location
- a single facility of finite capacity may be located at each site
- a single hub may be located at each site; a given site may either host a facility or a
hub (but not both)

Two-level
- First level: client demands assigned to a single hub
- Second level: each hub connected to subset of sites where facilities are installed

Resource abstraction: logical capacity associated to hubs
- Minimum ≡ capacity of single facility
- Maximum (theory) ≡ sum of capacities of all installed facilities
- In practice: equal distribution of facility capacity between a pair of hubs (minimum
level of reliability)

Hybrid assignments: client demands are allocated to a single hub
(single-source/-assignment) which can then fraction these demands among
multiple facilities (multi-source/-assignment) located at different sites
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Model (3)

Routing cost
- Between demand points and hubs: follow standard graph (hop-count) metric
- Between hubs and facilities follow minimum cost multi-commodity flow
problem: dynamic (re-)allocation of demands to different facilities depending
on available capacity on servers they host

Combined problem: facility location (and dimensioning their capacity for customer
allocation purposes) but also routing of set of flows corresponding to demands
originated by individual customers to set of facilities via single hub h

Comparisons at two levels depending on i) metric selected and ii) installation of
hubs (or not)
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Formulation: Data and Parameters

Given finite directed graph G = (V, E)

I ⊆ V, (|I| = I ): set of client demand points/nodes

J ⊆ V, (|J | = J): set of potential locations (or sites) where to host a facility of
finite capacity bj

H ⊆ V, (|H| = H): set of potential locations candidate for hosting a hub

Note: a given location can either host a hub or a facility but not both, H
⋂
J = ∅

Data and Parameters
Nominal capacity κ(u,v) of each arc (u, v) ∈ E directed from node u to v

Demand set A = {ai} where ai = size of demand initiated by demand point
i ∈ I ⊆ V
Total demand A =

∑
i∈I ai

Note: in comparison to canonical flow routing problems, demand described by
source initiating point but obviously not its destination
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Formulation: Variables

Variables
Real variable xhj ≥ 0: aggregated amount of traffic which has to be transferred
from the hub h to the facility located at site j ∈ J

Binary variable yj = 1 if facility with capacity bj opened/installed at location
j ∈ J and 0 otherwise

Binary variable zih = 1 if customer demand point i assigned to hub h ∈ H and 0
otherwise

Note: when i = h, variable zih represents installation (= 1) or not (= 0) of a hub
at location h ∈ H
Real variable fh(u,v)j ≥ 0: amount of (aggregated) traffic flowing along arc
(u, v) ∈ E from hub h to facility j
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Formulation: Costs and Objective

Costs
Hub installation cost ηh of installing a hub at location h ∈ H
Facility installation cost ϕj of installing a facility at location j ∈ J
Routing cost comprises

1. Cost of routing traffic associated to demand di originated by demand point i to hub
installed at location h ∈ H
Set proportionally to graph distance d(i , h) from i to h, i.e., δihai

2. Cost τ(u,v) of routing one unit of aggregated traffic from hub installed at location
h ∈ H to facility located at site j ∈ J

Solution cost = sum of i) hub location cost, ii) facility location cost, and iii)
routing cost of customers demands to a subset of installed facilities via a single
installed hub

Objective
Combined problem consists in minimizing sum of all costs while satisfying demand
requirements and facility capacity constraints

D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 59 / 124



Formulation: MIP Formulation

min
∑
h∈V

ηhzhh +
∑
j∈V

ϕjyj +
∑
i∈V

∑
h∈V

δihaizih +
∑

(u,v)∈E

∑
h∈V

∑
j∈V

τ(u,v)fh(u,v)j (90)

subject to:∑
h∈V

zih = 1 i ∈ V (91)

zih ≤ zhh i ∈ V, h ∈ V (92)
yh + zhh ≤ 1 h ∈ V (93)∑
i∈V

aizih =
∑
j∈V

xhj h ∈ V (94)

∑
i∈V

aizih ≤ (α
∑
j∈V

bjyj)zhh h ∈ V (95)

∑
h∈V

xhj ≤ bjyj j ∈ V (96)

fh(u,v)j ≤ xhj h ∈ V, (u, v) ∈ E , j ∈ V (97)∑
h∈V

∑
j∈V

fh(u,v)j ≤ κ(u,v) (u, v) ∈ E (98)

∑
j∈V

∑
v :(v ,u)∈E

fh(v ,u)j = xhu +
∑
j∈V

∑
v :(u,v)∈A

fh(u,v)j h ∈ V, u ∈ V, h 6= u (99)

∑
j∈V

xhj =
∑
j∈V

∑
v :(h,v)∈E

fh(h,v)j h ∈ V (100)

fh(u,v)j ≥ 0 h ∈ V, (u, v) ∈ A, j ∈ V (101)

xhj ≥ 0 h ∈ V, j ∈ V (102)
yj ∈ {0, 1} j ∈ V (103)
zih ∈ {0, 1} i ∈ V, h ∈ V (104)
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Formulation: Constraints (1)

Demand satisfaction constraints
∑

h∈V zih = 1 (91) together with zih ∈ {0, 1}
(104): every demand ai can be satisfied by reaching a single hub (single-source
assignment)

In turn, every demand ai can be satisfied by set of installed facilities (provided
demand point i connected to single hub h)

Inequalities zih ≤ zhh (92) for each pair (i , h): no demand ai assigned to node
location other than one where a hub h is located (prevents direct allocation of
demands to installed facilities)

Every location may either host a facility or a hub (but not both): yh + zhh ≤ 1 (93)

Note: each location may remain free from any hub or facility
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Formulation: Constraints (2)

Conservation constraints
∑

i∈V aizih =
∑

j∈V xhj (94): sum of fractions assigned
from demand points to each hub h = sum (over all facilities j) of aggregated
amount from that hub h

At each hub h, sum of incoming traffic = sum of outgoing traffic (following hub
transformation)

Regulation constraints
∑

i∈V aizih ≤ (α
∑

j∈V bjyj)zhh (95) regulate incoming
demands such that each hub h attracts fraction α of demands

Fraction α set such that sum of processed demands < hub logical capacity
ch = α

∑
j∈V bjyj

Facility capacity constraints
∑

h∈V xhj ≤ bjyj (96): sum of fractions xhj reaching
every facility j doesn’t exceed its capacity bj

Hub-shipping constraints xhj ≤ min(ch, bj)yj : regulate amount of aggregated
traffic transferable from hub h to facility j

Logical capacity of each hub h, ch (at least) ∼ capacity of single facility
⇒ xhj ≤ bjyj
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Formulation: Constraints (3)

Set of constraints linking flow routing to hub-facility location problem:

Individual flow constraints fh(u,v)j ≤ xhj (97): traffic flow fh(u,v)j along each arc
(u, v) ∈ A from hub h to facility j delimited by fraction xhj allocated to facility j

Mutual capacity constraints
∑

h∈V
∑

j∈V fh(u,v)j ≤ κ(u,v) (98): load (sum of traffic
flows) on individual arcs (u, v) ∈ E does not exceed nominal capacity κ(u,v)

Flow conservation constraints∑
j∈V
∑

v :(v,u)∈E fh(v,u)j = xhu +
∑

j∈V
∑

v :(u,v)∈A fh(u,v)j (99): outgoing traffic
flowing from hub h to facility j and entering node u must be equal to fraction
served by facility j plus outgoing traffic flow leaving that node towards j

Flow conservation constraints
∑

j∈V xhj =
∑

j∈V
∑

v :(h,v)∈E fh(h,v)j (100): sum over
j of fractions xhj transferred by hub h equals to sum of flows fh(h,v)j leaving that
hub (a given location j may either host a hub or a facility (93))
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Formulation: Constraints (4)

Handling of the RHS of the nonlinear constraints (93):

Theorem: binary product c = a.b, where a, b are binary variables, can be linearized
by substituting binary variable c with linear inequalities: 1) c ≤ a; 2) c ≤ b; 3)
c ≥ a + b − 1

As both yj and zhh are binary: introduce auxiliary variables ζhj = yjzhh
→ Set of constraints: ∑

i∈V

aizih ≤ α
∑
j∈V

bjζhj (105)

ζhj ≤ yj (106)

ζhj ≤ zhh (107)

ζhj ≥ yj + zhh − 1 (108)

Linearization procedure

Increases number of constraints and binary variables up to additive factor of V 2

Does not significantly increase model complexity since substitutions independent of
flow variables fh(u,v)j which dominate formulation complexity (V 2.E)
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Numerical Experiments (1)

HLRP formulation (collective resource abstraction) and LRP variant solved with
CPLEX 12.6.3 (computation time limit of 43200s)

LRP formulation: individual resource abstraction
- Combines cFLP with minimum cost multi-commodity flow routing problem
- Allocates demands to facilities without involving intermediate hubs but assuming
each facility individually capable to assign local resources to incoming demands

Executions performed on a dedicated server equipped with 8 x Intel Xeon
quad-core processors and 512GB of DDR3 RAM

Topologies (source: SNDlib library)

Topology Nodes Arcs Degree Diameter
Min. Max. Avg

austria 24 110 2 11 4.58 4
france 25 90 2 10 3.60 5
norway 27 102 2 6 3.78 7
india35 35 160 2 9 4.57 7
giul39 39 344 6 16 8.82 6
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Numerical Experiments (2)

For each topology, matrix of distances d(i , j) = δij computed from corresponding
graph

SNDlib doesn’t provide cost of locating hubs (ηh) and facilities (ϕj)

- Facility location cost set independently of its physical location in value range
5000, 10000, 15000

- Hub installation cost set proportionally to that cost following step increasing factor
from 1 to 10

Capacity distributed over set of (potential) facilities is non-blocking: sum of all
demands over all originating points does not exceed total facility capacity

∑
j∈J bj

Total required capacity homogeneously distributed among installed facilities
bj = b, ∀j ∈ J
Demand set A comprises order of 10.|V| tuples (demand point, demand size)
drawn from a truncated Pareto distribution P(β) with support [10, 1000] and
shape parameter β = 1.4

Note: using other patterns, such as step functions (where each step corresponds to
a given demand size), results obtained do not show any significant variation
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Numerical Experiments: Results (1a)

Figure : TOT and RTG vs. Hub Cost: franceD.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 67 / 124



Numerical Experiments: Results (1b)

Figure : TOT and RTG vs. Hub Cost: norwayD.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 68 / 124



Numerical Experiments: Results (1c)

Figure : TOT and RTG vs. Hub Cost: india35D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 69 / 124



Numerical Experiments: Results (2)

Main observations

When number of hubs decreases:

Number of installed facilities may increase by up to 50% (compared to min.number
of facilities required to serve all demands)
Value reached when max.number of installed hubs decreases by factor 2

When facility cost = 15000, number of installed facilities remains almost steady
even when number of installed hubs decreases by 50%

For all topologies

Routing cost increases before reaching its maximum when number of installed hubs
crosses pivotal value of half max.number of hubs (compared to value obtained with
min.installation cost)
Max.value ∼ number of installed facilities

⇒ Decreasing number of reachable hubs tends to increase number of required
facilities at detriment of increasing routing cost
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Numerical Experiments: Results (3)

Main observations

Enforce both number of hubs and facilities to their lowest value by setting them to
their minimal value obtained from the previous executions

Strategy is not beneficial, in particular, when hub installation cost sits in the lower
range

Reason: higher routing cost counter-balances gain in installation cost obtained
when number of hubs and facilities take their minimal value

⇒ Decreasing both number of hubs and facilities comes at detriment of higher
routing cost

Comparison with LRP model

For smaller topologies: significant drop in routing cost (following the MMCF
strategy) from 27% for norway to 38% for france with gain in total cost up to 15%

For larger topologies (e.g., india35 and giul39): routing cost can decrease by
factor 2 although total cost itself increases by 30% (distribution of functionality
per server)
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Numerical Experiments: Performance

Performance results

Topology Nodes Arcs Variables Constraints Comp.
Continuous Binary Time (s)

france 25 90 56875 1275 117115 376
austria 24 110 63936 1176 131006 411
norway 27 102 75087 1485 154083 2112
india35 35 160 197225 2485 400945 12414
giul39 39 344 524745 3081 1057673 43200

Main limitation: large number of continuous variables and constraints

Such dimensions lead to challenging problems which require to process very large
number of continuous variables indirectly linked to binary variables by conservation
and capacity constraints

Note: enforcing single-assignments between hubs and facilities (binary variables
xhj) would render this relation even tighter following (97)
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Perspectives

Apply Benders decomposition method to design an algorithm whereby
- binary variables yj and zih kept in master problem (MP)
- continuous variables xhj and fh(u,v)j projected out and used only in
subproblems

Resulting MP (yj ,zih) space): single continuous variable and subset of inequalities
not involving xhj and fh(u,v)j

Method requires to solve iteratively master and subproblems several times
⇒ suitable when decomposed problem much easier than the original one (master
reduced to variant of cFLP and subproblems to variant of flow routing)

Extend model to more complex routing costs defined by increasing convex
functions (∼ arc load `(u,v) =

∑
h,j∈V fh(u,v)j)
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Foreword

Relationships
(Robust) optimization → machine learning

- (Robust) Model extraction: discover relationships between x = (x1, x2, · · · , xn) and
y : y = F (x)

- (Robust) Prediction: produce function F (x) such that ŷ = F (x) minimizes loss
L(y , ŷ), e.g.,

√
E[y − ŷ ]2

Then knowing F , use new input x∗ to predict ŷ∗ = F (x∗)

Machine learning → (robust) optimization: achieve more than computation
task(s) automation tool (e.g., parameter selection)

Goal
Automate construction of uncertainty sets: one of the two central problems in robust
optimization

Construction: combine model-driven (incumbent approach) with data-driven methods

Automation: procedure combining feature extraction from data, stat.hypothesis tests and
selection of model which best explains data

⇒ Exploit machine learning techniques
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L(y , ŷ), e.g.,

√
E[y − ŷ ]2
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What do we mean by Uncertainty ?

Aleatory uncertainty

Compared to epistemic uncertainty: physical variability present in the system
(endogenous) or its environment (exogenous)

Properties of aleatory uncertainty

Intrinsic: variable is random; different value each time it is observed
→ additional experiments (observations, data) can only be used to better
characterize variability
Irreducible: not strictly due to a lack of knowledge, cannot be reduced
→ taking more measurements will not reduce uncertainty in the value of the
variable

Implications

Modeling: (typically) probabilistic framework
Examples: demands variability, (certain) topology failures, etc.
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Problem space

Goal (both stochastic and robust optimization): find a solution that will perform
well under any possible realization of random parameters, i.e., find solutions
which remain valid even if input data changes

Stochastic optimization: probabilistic description of uncertainty

Random parameters governed by prob. distributions known by the decision maker,
and the objective is to find a solution that minimizes the expected cost

Applied when seeking solutions that perform well in the long run on average, with
poor performance at some times balanced by good performance at others

Decisions are evaluated ex-post, i.e., after uncertainty has been resolved, and costs
have been realized (solution quality known at realization time)

Robust optimization: deterministic description of uncertainty

Prob.distribution of uncertainty not known, and uncertain parameters are specified
either by discrete scenarios, continuous ranges, sets, etc.

Time independence (more precisely, solution quality known at computation time)
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Robust Optimization

Objective
Find solutions to uncertain problems that remain feasible for all scenarios involving
uncertainty (in parameters or even variables) such as to protect/immunize against
infeasibility

Properties
Probability distribution characterizing uncertainty not known

Time independence: solution quality known at computation time

Uncertain parameters specified by discrete scenarios, continuous ranges, sets, etc.
→ representation models for uncertainty sets

Hypercube uncertainty set (Soyster, 1973)
Polytopic uncertainty: ellipsoidal uncertainty set (Ben-Tal-Nemirovski, 1999)
Cardinality constrained uncertainty (Bertsimas-Sim, 2004−Γ-robustness)
Data-driven/distributional approaches (Bertsimas, 2006) to build models
yielding less conservative uncertainty sets
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Data-Driven Robust Optimization (1)

Uncertain constraints F (ã, x) ≤ 0
ã: uncertainty parameter modeled as random variable whose distribution P∗ is
unknown (except for some pre-assumed structural features)

Robust constraints modeled by choosing uncertainty set U such that
F (a, x) ≤ 0, ∀a ∈ U
Given ε > 0, constructed sets Uε implies probabilistic guarantee for P∗ at level ε:
for any x∗

if F (a, x∗) ≤ 0, ∀a ∈ Uε (109)

then P∗(F (ã, x∗) ≤ 0)) ≥ 1− ε (110)

Condition ensuring that feasible solution to robust constraint also feasible with
probability 1− ε wrt P∗ even if P∗ is not known exactly
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Data-Driven Robust Optimization (2)

Assumptions
Data set {â1, . . . , ân} drawn i.i.d. according to P∗

Structural features of P∗ known a priori

Main concept
Pair different a priori assumptions and stat.hypothesis tests to obtain
distinct data-driven uncertainty sets

- Each with its own geometric and computational properties
- Capturing features of P∗, e.g., skewness, heavy-tails and correlations

Use confidence region of hypothesis test to quantify learning about P∗ from
data

Using this (general) technique one may consider (Bertsimas, 2013):
P∗ with finite discrete support (known)
P∗ with possible continuous support and

- Components of ã are independent
- Data drawn from marginal distributions of P∗ separately (data sampled
asynchronously)

- Data are sampled from joint distribution
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Learning traffic uncertainty from data

Machine learning methods
Data-driven methods: inference tasks (density estimation), stat.hypothesis tests,
structure and feature extraction from data samples

Model-driven methods: produce and select an hypothesis (approx.function) which best
explains the data

Robust optimization problems
Traffic demand variability → Traffic fluctuations
Example: network design, capacity (re-)dimensioning, routing decision and action
planning under uncertainty (robustified MCF, MMCF, MCND)

Topology failures → Traffic fluctuations
Example: re-routing decisions and protection capacity dimensioning

Resource demands variability (distributed file servers/caches)
Example: server (re)location decisions

Quality of service (congestion): bandwidth - delay
Example: robust multi-objective optimization

Input data: from (distributed) monitoring task
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Traffic uncertainty

Goal: find solutions that remain feasible for all scenarios in uncertainty set U to
protect/immunize against infeasibility
Model: uncertainty in traffic flows (model parameters):

ϕst
ij → ϕ̄st

ij + ξst ϕ̂st
ij , ∀s, t ∈W (111)

ϕ̄st
ij ∈ R+: nominal value of the traffic flow
ϕ̂st
ij : deviation or perturbation of ϕ̄st

ij

ξstij : random variable with unknown distribution (except some structural properties)
W ⊆ V : subset of nodes defining (s, t) pairs of traffic flows subject to uncertainty

Method:
Build uncertainty set U(ξst) with ξst ∈ Z such that constraints rewritten by
grouping deterministic and uncertain part:∑

s,t∈V
ϕ̄st
ij y

st
ij +

∑
s,t∈W

ξst ϕ̂st
ij y

st
ij ≤ Cijxij , ∀(i , j) ∈ A (112)

Find solutions that remain feasible for any ξ ∈ Z∑
s,t∈V

ϕ̄st
ij y

st
ij + max

ξst∈Z
(
∑

s,t∈W
ξst ϕ̂st

ij y
st
ij ) ≤ Cijxij , ∀(i , j) ∈ A (113)
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Perturbation sets

Formulation of robust counterpart depends on construction and selection of
perturbation set Z:

Base sets

Box: Z∞ = {ξ ∈ R | ‖ξ‖∞ ≤ Ψ} = {ξ ∈ R | |ξst | ≤ Ψ, ∀(s, t) ∈W }

Polyhedral: Z1 = {ξ ∈ R | ‖ξ‖1 ≤ Γ} = {ξ ∈ R |
∑

s,t∈W |ξ
st | ≤ Γ}

Ellipsoid: Z2 = {ξ ∈ R | ‖ξ‖2 ≤ Ω} = {ξ ∈ R |
∑

s,t∈W (ξst)2 ≤ Ω2}
where, Ψ, Γ, Ω are the adjustable parameter controlling the magnitude of the
perturbation set

Combinations (intersection between box, polyhedral, ellipsoidal sets)

Box + Polyhedral: Z∞∩1 = {ξ ∈ R| ‖ξ‖∞ ≤ Ψ, ‖ξ‖1 ≤ Γ}

Box + Ellipsoidal: Z∞∩2 = {ξ ∈ R| ‖ξ‖∞ ≤ Ψ, ‖ξ‖2 ≤ Ω}

Box + Polyhedral + Ellipsoidal:
Z∞∩1∩2 = {ξ ∈ R| ‖ξ‖∞ ≤ Ψ, ‖ξ‖1 ≤ Γ, ‖ξ‖2 ≤ Ω}
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Perturbation sets: incremental construction

Tradeoff against Computational complexity

Original Problem LP MILP QCQP SOCP
Polyhedral Set LP MILP MINLP MINLP
Ellipsoidal Set SOCP MISOCP SDP SDP

Procedure

If Z ← Z∞ = {ξ ∈ R | ‖ξ‖∞ ≤ Ψ} too conservative

Then Z ← Z∞∩1 = {ξ ∈ R| ‖ξ‖∞ ≤ Ψ, ‖ξ‖1 ≤ Γ}

- If Z too liberal
Then Z ← Z∞∩1∩2 = {ξ ∈ R| ‖ξ‖∞ ≤ Ψ, ‖ξ‖1 ≤ Γ, ‖ξ‖2 ≤ Ω}

Else If Z ← Z1 = {ξ ∈ R| ‖ξ‖1 ≤ Γ} too conservative
Then Z ← Z1∩∞ or Z1∩2

Else If Z ← Z2 = {ξ ∈ R| ‖ξ‖2 ≤ Ω} too conservative
Then Z ← Z2∩∞ or Z2∩1
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Geometric Interpretation

Geometric interpretation (Ψ = 1)
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Example: with two traffic flows
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Uncertainty set: safety margin model

Model assumptions:
Characteristic value ϕ̄st

ij for each traffic flow determined a priori from past
data (prediction), e.g., (expected) mean
Deviation delimited by safety margin in

[
−ϕ̂st

ij , ϕ̂
st
ij

]
, with ϕ̂st

ij = max.deviation
Note: such choice may be too conservative (consider instead, e.g., standard
deviation or mean deviation)

Then following Eq.111 ϕst
ij → ϕ̄st

ij + ξst ϕ̂st
ij , ∀s, t ∈W :

Uncertainty set: U = {ϕst
ij | ϕ̄st

ij − ξst ϕ̂st
ij ≤ ϕst

ij ≤ ϕ̄st
ij + ξst ϕ̂st

ij , ξ ∈ Z∞,1}
Perturbation set:

- Z∞ = {ξ ∈ R|W | | |ξst | ≤ 1,∀s, t ∈W }
- Z1 = {ξ ∈ R|W | |

∑
s,t∈W |ξ

st | ≤ |W |}
- Z∞,1 = {ξ ∈ R|W | |

∑
s,t∈W |ξ

st | ≤ |W |, |ξst | ≤ 1, ∀s, t ∈W }
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s,t∈V

ϕ̄st
ij y

st
ij +

∑
s,t∈W

w st
ij + |W |zij ≤ Cijxij , (i , j) ∈ A (114)

zij + w st
ij ≥ ϕ̂st

ij y
st
ij s, t ∈W , (i , j) ∈ A (115)

w st
ij ≥ 0, zij ≥ 0 s, t ∈W , (i , j) ∈ A (116)
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Uncertainty set: perturbation model

Model assumptions:
Nominal value ϕ̄st

ij for each traffic flow
Deviation ϕ̂st

ij modeled as bounded perturbation around that value
εst ϕ̄st

ij , |εst | ∈ [0, 1]:
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ij → εst ϕ̄st
ij

Goal: construct less conservative sets

Then following ϕst
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ϕ̄st
ij y
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ij +

∑
s,t∈W

w st
ij + |W |zij ≤ Cijxij (i , j) ∈ A (117)

zij + w st
ij ≥ εst ϕ̄st

ij |y st
ij | = εst ϕ̄st

ij y
st
ij s, t ∈W , (i , j) ∈ A (118)

w st
ij ≥ 0, zij ≥ 0 s, t ∈W , (i , j) ∈ A (119)
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Probabilistic Guarantees

Questions (when uncertainty set does not cover the whole uncertainty space)

Necessary size of uncertainty set to ensure that the degree of constraint
violation does not exceed a certain level ?
What is the degree (probability) of constraint violation Pv upon solution of
robust optimization problem ?

Pv = P[
∑
s,t∈V

ϕ̄st
ij y

st
ij +

∑
s,t∈W

ξstij ϕ̂
st
ij y

st
ij ≥ Cijxij ] (120)

Methods to evaluate probabilistic guarantees: probabilistic guarantee on
constraint satisfaction or upper bound on probability of constraint violation
1. Derive probability of constraint violation using the uncertainty set

information before solving the problem (as much as possible)
→ a priori probability bound

2. Derive the probability directly from the robust counterpart optimization
solution (sometimes only possible alternative)
→ a posteriori probability bound
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Use case (1)

Measurement of spatio-temporal traffic properties

Troubleshoot communication networks performance, quality, etc.
Information to traffic-driven processes (predictive routing decisions)

Active vs. Passive measurement

Active: set of dedicated messages (probes) sent along links / paths
Passive: dedicated devices (monitoring points) placed on node’s outgoing
interfaces, sampling outgoing traffic, i.e., capture percentage of traffic
following a given configuration (sampling rate)

Passive monitoring ⇒ adequate placement and configuration of monitoring
points (traffic uncertainty and dynamics)
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Use case (2)

Cooperative monitoring problem
Adequate placement and configuration of passive monitoring points to jointly realize a
given task of monitoring time-varying traffic flows along their respective routing path

Problem: knowing traffic demands, where to place and how to configure passive
monitoring points such that k% of traffic flowing along each path is monitored ?
Example: monitoring task ≡ monitor flow f 15

ij with k = 80%
Monitoring point installed at head-end of arc (1,6) sampling traffic at 10%
— arc (6,4) — 20%
— arc (7,5) — 50%
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Optimization Problems

Cost function
Installation cost ∝ spatial distribution of flows

Configuration cost ∝ fraction of traffic sampled at each monitoring point such that along
each routing path the total fraction k ≤ 100%

Flow variables ∝ strategy adopted for routing of traffic flows, e.g., Minimum cost flow
(MCF), Minimum cost multi-commodity flow (MMCF)

Optimization problems
Minimize total monitoring cost
such that task of monitoring time-varying traffic flows can be jointly realized

Maximize utility of monitoring traffic flows
without violating budget constraint imposed on total monitoring cost

Cooperation between monitoring points
along each routing path, traffic sampled at a given monitoring point NOT sampled again
at another point along same path
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Prior and Related Work

[Suh2005]
- Problems: i) minimize installation (and operational) cost to achieve given monitoring
objective, ii) maximize utility of captured traffic under monitoring budget constraints →
limit number of devices to be deployed

- Evaluation on small instances (limited to 10-nodes random graphs) and number of flows
(synthetic traffic matrices)

- Configurable sampling rate for each flow at each monitoring point but rate adjusted
independently along the same routing path

[Chaudet2009]
- Monitoring at least k% of total traffic (without necessarily monitoring every path) while
minimizing setup cost (device installation) and exploitation cost (sampling ratio
assignation to each device)

- When total fraction k = 100% ⇔ Minimum Set Cover problem
- Simpler arc-path formulation (although sill non-polynomial)
- No results provided for passive monitoring model with traffic sampling k < 100%

[Cantieni2006]
- Individual nodes apply local decisions in order to minimize their memory usage following a
global sampling strategy for a specific monitoring goal

- Proposed formulation: multiplies (for each arc) sampling rate with traffic load (aggregate)
instead of individual flows
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Input data, Parameters and Variables

Input Data
Network topology modeled by directed graph G = (V ,A)

V , finite set of nodes and A , finite set of arcs (i , j)

Demand matrix D: D(s, t) , total amount of traffic from source s to destination t,
∀(s, t) ∈ V , s 6= t

Parameters
Flow parameters: ϕst

ij ∀(i , j) ∈ A (depend on routing strategy, e.g., MCF, MMCF)

Total fraction of traffic k to be monitored along each path (single path routing)

When formulation is capacitive: monitoring points associated capacity βij

Variables
Binary variable xij = 1 if a monitoring point should be installed at head end i along arc
(i , j), 0 otherwise

Continuous variables y st
ij = fraction of traffic flow ϕst

ij sampled on monitoring point
installed along arc (i , j)
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Cost function and Formulation

Monitoring cost function , Installation cost + Configuration cost

Installation cost: fixed cost mij of installing a monitor at head-end of i arc (i , j)

Configuration cost over all installed monitors:
∑

(i,j)∈A nij`ij

Fraction of traffic sampled at monitoring point installed along arc (i , j) : y st
ij

Monitoring load at that point : `ij =
∑

s,t∈V ϕ
st
ij y

st
ij

Cost per unit of sampled traffic : nij

Utility function u

Utility function u ∝ a− exp(−b
∑

(i,j)∈A y
st
ij ) where, a, b ∈ R+

0

Non-decreasing (increasing monitoring fraction improves utility) but after reaching
a certain threshold, relatively less beneficial to increase monitored fraction of traffic

For computational purposes, approximate concave continuous function using
piecewise-linear continuous fit [Geoffrion1977]
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Utility Maximimization Problem

Problem
Problem: Given budgetM for monitoring installation cost and N for monitoring
configuration cost, find localization and configuration of monitoring points which
maximizes sum of utilities of monitoring traffic flows without violating budget constraints

Objective: Maximize sum of utilities of monitoring individual traffic flows without
violating budget constraints on installation and configuration cost

max
∑
s,t∈V

ust(
∑

(i ,j)∈A

y stij ) (121)

subject to:∑
(i ,j)∈A

mijxij ≤M (122)

∑
(i ,j)∈A

nij
∑
s,t∈V

ϕst
ij y

st
ij ≤ N (123)

y stij ≤ xij (i , j) ∈ A, s, t ∈ V (124)∑
s,t∈V

ϕst
ij y

st
ij ≤ βijxij (i , j) ∈ A (125)

∑
(i ,j)∈A

y stij ≥ Kmin s, t ∈ V (126)

xij ∈ {0, 1} (i , j) ∈ A (127)
y stij ∈ [0, 1] (i , j) ∈ A, s, t ∈ V (128)
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Robust Formulation

Motivations
Capture utility dependency on temporal variability of traffic demands

Given a certain monitoring budget, whether the corresponding layout will cope with
traffic variability
Determine if increasing monitoring budget enables to better cope with traffic
variability and to which extend

Method
Assumption: flow variables obtained by resolving the MCF or the single path
MMCF problem

Reformulate utility maximization problem such that uncertainty in traffic demands
translates into uncertainty of corresponding flow parameters ϕst

ij in budget
constraints (123) and monitoring capacity constraints (125)

Scenarios where uncertainty in traffic demands does not lead to spatial flow
re-routing
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Box+Polyhedral perturbation set Z∞,1
Uncertainty in traffic flows (model parameters): ϕst

ij → ϕ̄st
ij + ξst ϕ̂st

ij , ∀s, t ∈W

Constraints (123) and (125) rewritten by grouping deterministic and uncertain part:∑
(i,j)∈A

nij
∑
s,t∈V

ϕst
ij y

st
ij ≤ N →

∑
(i,j)∈A

νij

{ ∑
s,t∈V

ϕ̄st
ij y

st
ij + max

ξst∈U

∑
s,t∈W

ξst ϕ̂st
ij y

st
ij

}
≤ N

(129)∑
s,t∈V

ϕ̄st
ij y

st
ij + max

ξst∈U

∑
s,t∈W

ξst ϕ̂st
ij y

st
ij ≤ βijxij , (i , j) ∈ A

(130)

where uncertainty set U(ξ) with ξ ∈ Z given by:

U =
{
ϕst
ij = ϕ̄st

ij + ξst ϕ̂st
ij | ξ

st ∈ Z∞,1
}

(131)

Z∞,1 =
{
ξ ∈ R|W | |

∑
s,t∈W

|ξst | ≤ Γ, |ξst | ≤ Ψ,∀s, t ∈W
}

(132)

Robust counterpart of constraints (123) and (125) equivalently reformulated as:∑
(i,j)∈A

nij
{ ∑

s,t∈V
ϕ̄st
ij y

st
ij + Ψ

∑
s,t∈W

w st
ij + Γzij

}
≤ N (133)

∑
s,t∈V

ϕ̄st
ij y

st
ij + Ψ

∑
s,t∈W

w st
ij + Γzij ≤ βijxij , (i , j) ∈ A (134)

zij + w st
ij ≥ ϕ̂

st
ij y

st
ij , s, t ∈W , (i , j) ∈ A (135)

w st
ij ≥ 0, zij ≥ 0, s, t ∈W , (i , j) ∈ A (136)
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Box+Ellipsoidal perturbation set Z∞,2
Uncertainty in traffic flows (model parameters): ϕst

ij → ϕ̄st
ij + ξst ϕ̂st

ij , ∀s, t ∈W

Constraints (123) and (125) rewritten by grouping deterministic and uncertain part:∑
(i,j)∈A

nij
∑
s,t∈V

ϕst
ij y

st
ij ≤ N →

∑
(i,j)∈A

νij

{ ∑
s,t∈V

ϕ̄st
ij y

st
ij + max

ξst∈U

∑
s,t∈W

ξst ϕ̂st
ij y

st
ij

}
≤ N

(137)∑
s,t∈V

ϕ̄st
ij y

st
ij + max

ξst∈U

∑
s,t∈W

ξst ϕ̂st
ij y

st
ij ≤ βijxij , (i , j) ∈ A

(138)

where uncertainty set U(ξ) with ξ ∈ Z∞,2 given by:

U =
{
ϕst
ij = ϕ̄st

ij + ξst ϕ̂st
ij | ξ

st ∈ Z∞,2
}

(139)

Z∞,2 =
{
ξ ∈ R|W | |

∑
s,t∈W

|ξst | ≤ Γ,
∑

s,t∈W
(ξst)2 ≤ Ω2

}
(140)

Robust counterpart of constraints (123) and (125) equivalently reformulated as:∑
(i,j)∈A

nij
{ ∑

s,t∈V
ϕ̄st
ij y

st
ij + Ψ

∑
s,t∈W

w st
ij + Ω

√ ∑
s,t∈W

(ϕ̂st
ij )2(zstij )2

}
≤ N (141)

∑
s,t∈V

ϕ̄st
ij y

st
ij + Ψ

∑
s,t∈W

w st
ij + Ω

√ ∑
s,t∈W

(ϕ̂st
ij )2(zstij )2 ≤ βijxij , (i , j) ∈ A (142)

w st
ij ≤ y st

ij − zstij ≤ w st
ij , s, t ∈W , (i , j) ∈ A (143)

zstij ≥ 0, s, t ∈W , (i , j) ∈ A (144)
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Modeling uncertainty and sets (1)

Gaussian process
{X (t) : t ≥ 0} : dX (t) = σdBH(t) + µdt with solution X (t) = σBH(t) + µt

Mean function: E [X (t)] = µt

Variance function: V [X (t)] = E [(X (t)− µ)2] = σ2t2H

Hurst parameter (index): H(0 < H < 1)

- If H = 1/2 (Brownian motion): stationary and independent increments (short-range
dependence, autocorrelations decay exponentially)

- If H > 1/2 (Fractional Brownian motion): stationary and positively correlated
increments (long-range dependence, autocorrelations decay hyperbolically,
self-similarity)

Definitions
- Independent increments: for any
0 ≤ s1 < t1 ≤ s2 < t2 ≤< . . . < sn−1 ≤ tn−1 < tn <∞,Xti − Xsi are independent
random variables

- Stationary increments: probability distribution of any increment X (t)− X (s)
depends only on the length t − s of the time interval (if {X (t)−X (s)} independent
of s) → for any s < t, X (t)− X (s) distributionally equivalent to Xt−s
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Modeling uncertainty and sets (2)

Poisson-Pareto process
Superposition of independent traffic bursts (H) of variable length

Bursts lengths follows Pareto distribution with scale parameter δ and shape
parameter (decay rate α = 3− 2H) → complementary distribution:
P(b > t) =

(
δ
t

)3−2H if t ≥ δ (1, otherwise)

Bursts arrival follows Poisson process with rate λ
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Gaussian process with H = 1
2

Traffic parameter: ϕst = E [ϕst ] + ξst(εstE [ϕst ])

Polyhedral set: Z1

Expected value: E [ϕst ]→ µst

Perturbation (mean abs. deviation): E [|ϕst − E [ϕst ]|] = E [|ϕst − µst |]→
√

2
π
σst

→ ξst = ϕst−E [ϕst ]
εstE [ϕst ]

=
√
π
2

[
ϕst−µst
σst

]
→ Z1 =

{
ϕst ∈ Rn×n |

∑
(s,t)∈W

√
π
2

[
|ϕst−µst |

σst

]
≤ Γ

}
where, µst and σst given by the model (see next slide)

Ellipsoidal set: Z2

Expected value: E [ϕst ]→ µst

Perturbation (standard deviation):
√

E [(ϕst − E [ϕst ])2] =
√

E [(ϕst − ϕ̄st)2]→ σst

→ ξst = ϕst−E [ϕst ]
εstE [ϕst ]

= ϕst−µst
σst

→ Z2 =

{
ϕst ∈ Rn×n |

∑
(s,t)∈W

[
ϕst−µst
σst

]2
≤ Ω2

}
where, µst and σst given by the model (see next slide)

Note: relation standard (L2−norm) and mean deviation (L1−norm): , 2
π
σ ⇒ MAD ≤ SD
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Build corresponding set from data (1)

Procedure (1)

Parameter estimation: let xi be i th independent observation of random variable X

- Sample mean: x̄ = 1
n

∑n
i=1 xi

- Sample variance (unbiased): s2 = 1
n−1

∑n
i=1(xi − x̄)2

If more than one sample then check if they come from the same distribution
If number of samples = 2
Then 2−sample Kolmogorov-Smirnov test (Anderson-Darling test)
Else r−sample Kolmogorov-Smirnov test (Anderson-Darling test)

Hurst parameter test: variance-time plot (more elaborated in frequency domain:
Whittle MLE estimator and wavelet-based)

- Aggregated time series (to level m): X (m) = {X (m)
k : k = 1, 2, · · · },m = 1, 2, · · ·

with X
(m)
k = 1

m

∑km
j=km−m+1 Xj

- Estimate variance of X (m): σ̂2
(m)
'
∑

k (X
(m)
k − X̄ )

- Plot (log(m), log(σ̂2
(m)

))

- Compute slope , 2H̄ − 2 (negatively biased)

D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 103 / 124



Build corresponding set from data (2)

Procedure (2)

Normality test:
- If H → 1/2
- Then Shapiro-Wilk test to verify if (random) sample comes from specifically a
normal distribution

- Else see next slide

Extract model: (non-linear least squares) curve fitting problem
- Non-linear regression problem (minimize weighted sum of squared residuals) in stat.
referred to as χ2

- Levenberg-Marquardt algorithm: iterative procedure combining gradient descent
and Gauss-Newton algorithm

- Requires good starting (adjustable) parameter values (µ, σ2) and choice of damping
parameter (influences both descent direction and step-size)

Goodness of fit test
- As new samples comes perform (1-sample) KS- or Anderson-Darling test to
determine if it can be explained by this model.

- Adjust the model or build a new model (several aggregates in macro-flows)
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Gaussian process with 1
2 < H < 1

Procedure (3)

Fit data to Pareto distribution (characterizing bursts length): goodness of fit test
Estimation of scale parameter δ using the maximum likelihood estimator (MLE) ≡
smallest observation
Data transformation: if X follows Pareto distribution with shape parameter α then
Y = ln(X

δ̂
) follows exponential distribution with scale parameter α

Sum of weighted increments of the form ū = 1
n−1

∑n−1
i=1 (

∑i
j=1(Xj−Xj−1))∑n

j=1(Xj−Xj−1)

Test statistic for linear component Z1(ū) and quadratic component Z2(ū) such that
Z0 = Z2

1 + Z2
2

Reject null hypothesis if Z0 > χ2
2,α
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Gaussian process with 1
2 < H < 1

Procedure (4)
Case 1: independent short-duration bursts Poisson process X (rate λ1) and long-duration
bursts Poisson process Y (rate λ2) → B = X + Y Poisson process (rate λ = λ1 + λ2)

Safety margin
- Per pair (s, t) determine common distribution B (forward recurrence time of Pareto
distribution)

- Set τ such that λE(B)P(B > τ) captures sufficient large number of (long) bursts
to produce LRD

- Compute E [B] and Var [B] over period [t, t + τ ] (for non-equal non-constant burst
rate, less trivial)

- Derive max.admissible burst size (bst = ϕ̂ as safety margin)

Expected value
- Determine if short-burst data follows Poisson distribution: χ2 goodness of fit test
using λ̂1 computed from data

- If λ1 (model) � 1 then ϕ̄ derived from Gaussian model
- Else ϕ̄ = E [X ] = λ1

Case 2: dependent short-duration bursts Poisson process X (rate λ1) and long-duration bursts
Poisson process Y (rate λ2) → Z = X + Y |X (mixed Poisson model)
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Robust formulation: Gaussian model with Z∞,1

max
∑
s,t∈V

ust(
∑

(i ,j)∈A

y stij ) (145)

subject to:∑
(i ,j)∈A

mijxij ≤M (146)

∑
(i ,j)∈A

nij
{ ∑

s,t∈V
µsty stij + Ψ

∑
s,t∈W

w st
ij + Γzij

}
≤ N (147)

zij + w st
ij ≥

√
2
π
σsty stij s, t ∈W , (i , j) ∈ A (148)

y stij ≤ x stij (i , j) ∈ A, s, t ∈ V (149)∑
s,t∈V

µsty stij + Ψ
∑

s,t∈W
w st
ij + Γzij ≤ βijxij (i , j) ∈ A (150)

∑
(i ,j)∈A

y stij ≥ Kmin s, t ∈ V (151)

x stij ∈ {0, 1} (i , j) ∈ A (152)

y stij ∈ [0, 1] (i , j) ∈ A, s, t ∈ V (153)

w st
ij ≥ 0 (i , j) ∈ A, s, t ∈ V (154)

zij ≥ 0 (i , j) ∈ A (155)
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Robust formulation: Gaussian model with Z∞,2

max
∑
s,t∈V

ust(
∑

(i ,j)∈A

y stij ) (156)

subject to:∑
(i ,j)∈A

mijxij ≤M (157)

∑
(i ,j)∈A

nij
{ ∑

s,t∈V
µsty stij + Ψ

∑
s,t∈W

σst |y stij − zstij |+ Ω

√ ∑
s,t∈W

(σst)2(zstij )2
}
≤ N (158)

y stij ≤ x stij (i , j) ∈ A, s, t ∈ V (159)∑
s,t∈V

µsty stij + Ψ
∑

s,t∈W
σst |y stij − zstij |+ Ω

√ ∑
s,t∈W

(σst)2(zstij )2 ≤ βijxij (i , j) ∈ A (160)

∑
(i ,j)∈A

y stij ≥ Kmin s, t ∈ V (161)

x stij ∈ {0, 1} (i , j) ∈ A (162)

y stij ≥ 0 (i , j) ∈ A, s, t ∈ V (163)

zstij ≥ 0 (i , j) ∈ A, s, t ∈ V (164)
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Robust formulation: Poisson-Pareto model with Z∞,1

max
∑
s,t∈V

ust(
∑

(i ,j)∈A

y stij ) (165)

subject to:∑
(i ,j)∈A

mijxij ≤M (166)

∑
(i ,j)∈A

nij
{ ∑

s,t∈V
λsty stij + Ψ

∑
s,t∈W

w st
ij + Γzij

}
≤ N (167)

zij + w st
ij ≥ bsty stij s, t ∈W , (i , j) ∈ A (168)

y stij ≤ x stij (i , j) ∈ A, s, t ∈ V (169)∑
s,t∈V

λsty stij + Ψ
∑

s,t∈W
w st
ij + Γzij ≤ βijxij (i , j) ∈ A (170)

∑
(i ,j)∈A

y stij ≥ Kmin s, t ∈ V (171)

x stij ∈ {0, 1} (i , j) ∈ A (172)

y stij ∈ [0, 1] (i , j) ∈ A, s, t ∈ V (173)

w st
ij ≥ 0 (i , j) ∈ A, s, t ∈ V (174)

zij ≥ 0 (i , j) ∈ A (175)
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Evaluation instances: Topologies

Topologies (SNDLib database)

Topology Nodes Links Min,Max,Avg
Degree Diameter

atlanta 15 22 2;4;2.93 5
cost266 37 57 2;5;3.08 8
france 25 45 2;10;3.60 5
geant 22 36 2;8;3.27 5

india35 35 80 2;9;4.57 7
newyork 16 49 2;11;6.12 3
nobel-eu 28 41 2;5;2.93 8
norway 27 51 2;6;3.78 7

Link capacities and costs provided by SNDlib database

Traffic demands provided by SNDlib database for these topologies
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Execution

Environment
IBM ILOG OPL modeling language and solved it with CPLEX 12.6

Execution on dedicated server with 8 Intel Xeon quad-core processors and 512GB
DDR3 RAM

Linux CENTOS 6.5

Execution
Add constraintsM+N ≤cost and give total budget cost as input

Step-increase of total monitoring cost and determine utility obtained while
maximizing total fraction k of monitored traffic

- Fraction k does not apply equally to each traffic flow (report average monitoring
fraction over traffic flows)

- Each execution runs up to 3600s for each step

Traffic demands experiencing perturbation from 0% (no perturbation) to 80% with
steps of 5%

utility function (parameter values): a = 1 and b = 6.3
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Numerical Results: Gaussian model (H = 1/2)

0.00 0.20 0.40 0.50 0.60 0.80
Ctot avg(k) Nm u avg(k) Nm u avg(k) Nm u avg(k) Nm u avg(k) Nm u avg(k) Nm u

France
1100 0.13 9 313 0.12 8 304 0.12 6 282 0.12 7 280 0.12 9 285 0.10 8 247
2200 0.24 11 581 0.23 11 559 0.22 9 530 0.22 11 522 0.22 12 521 0.19 13 464
5500 0.55 19 1314 0.53 18 1265 0.51 21 1203 0.49 24 1171 0.47 30 1112 0.41 28 969
8800 0.84 26 1983 0.79 38 1878 0.72 47 1711 0.69 47 1641 0.64 40 1522 0.56 36 1335
11000 0.99 55 2344 0.90 51 2138 0.82 49 1935 0.79 50 1868 0.74 44 1739 0.65 40 1543

India35
1000 0.18 16 839 0.16 14 776 0.15 15 702 0.14 14 667 0.13 14 651 0.11 13 558
2000 0.31 24 1483 0.29 23 1370 0.27 25 1263 0.25 24 1205 0.24 22 1166 0.21 21 1004
5000 0.64 42 3022 0.59 39 2796 0.56 42 2624 0.52 38 2470 0.50 40 2370 0.44 40 2064
8000 0.90 50 4212 0.83 55 3889 0.78 58 3656 0.73 53 3427 0.69 50 3259 0.61 47 2876
10000 0.99 86 4636 0.93 71 4375 0.88 69 4117 0.83 63 3894 0.79 57 3712 0.71 54 3336

Norway
45000 0.50 14 2769 0.47 14 2613 0.44 12 2459 0.43 12 2391 0.41 10 2294 0.38 10 2133
90000 0.72 25 3987 0.71 24 3949 0.69 22 3804 0.67 23 3723 0.66 21 3667 0.63 20 3490
225000 0.93 60 5131 0.92 58 5112 0.92 55 5081 0.92 53 5078 0.91 55 5048 0.91 51 5018
360000 0.97 87 5377 0.97 86 5360 0.97 82 5376 0.97 83 5372 0.97 83 5348 0.97 79 5349
450000 0.99 99 5491 0.99 99 5479 0.99 96 5494 0.99 97 5473 0.99 95 5469 0.99 93 5466
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Results: Safety margin model - Gaussian (1)
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Results: Safety margin model - Gaussian (2)

D.Papadimitriou IEEE HPSR 2016 Jun.14, 2016 114 / 124



Numerical Results: Poisson-Pareto model (1/2 < H < 1)

0.00 0.20 0.40 0.50 0.60 0.80
Ctot avg(k) Nm u avg(k) Nm u avg(k) Nm u avg(k) Nm u avg(k) Nm u avg(k) Nm u

France
1100 0.13 9 313 0.12 8 304 0.12 6 282 0.12 7 280 0.12 9 285 0.10 8 247
2200 0.24 11 581 0.23 11 559 0.22 9 530 0.22 11 522 0.22 12 521 0.19 13 464
5500 0.55 19 1314 0.53 18 1265 0.51 21 1203 0.49 24 1171 0.47 30 1112 0.41 28 969
8800 0.84 26 1983 0.79 38 1878 0.72 47 1711 0.69 47 1641 0.64 40 1522 0.56 36 1335
11000 0.99 55 2344 0.90 51 2138 0.82 49 1935 0.79 50 1868 0.74 44 1739 0.65 40 1543

India35
1000 0.18 16 839 0.16 14 776 0.15 15 702 0.14 14 667 0.13 14 651 0.11 13 558
2000 0.31 24 1483 0.29 23 1370 0.27 25 1263 0.25 24 1205 0.24 22 1166 0.21 21 1004
5000 0.64 42 3022 0.59 39 2796 0.56 42 2624 0.52 38 2470 0.50 40 2370 0.44 40 2064
8000 0.90 50 4212 0.83 55 3889 0.78 58 3656 0.73 53 3427 0.69 50 3259 0.61 47 2876
10000 0.99 86 4636 0.93 71 4375 0.88 69 4117 0.83 63 3894 0.79 57 3712 0.71 54 3336

Norway
45000 0.50 14 2769 0.47 14 2613 0.44 12 2459 0.43 12 2391 0.41 10 2294 0.38 10 2133
90000 0.72 25 3987 0.71 24 3949 0.69 22 3804 0.67 23 3723 0.66 21 3667 0.63 20 3490
225000 0.93 60 5131 0.92 58 5112 0.92 55 5081 0.92 53 5078 0.91 55 5048 0.91 51 5018
360000 0.97 87 5377 0.97 86 5360 0.97 82 5376 0.97 83 5372 0.97 83 5348 0.97 79 5349
450000 0.99 99 5491 0.99 99 5479 0.99 96 5494 0.99 97 5473 0.99 95 5469 0.99 93 5466
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Results: Large perturbation model - Pareto (1)
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Results: large perturbation model - Pareto (2)
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Summary

Summary

Formulation involves a number of constraints O(|V |3) → Resolution reaches
computational limits of MIP solvers CPLEX
→ Limit on instances size (in particular for MISOCP)
⇒ More efficient resolution methods required to cope with combinatorial explosion
of monitoring utility maximization problem

Next steps
Extend proposed formulation to multiple time period problems (instead of a single
period)

Confront model/results with real data traces (instead of synthetic traces)
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Future Research Work

Open research questions
Combine structural with behavioral properties to automate learning of uncertainty
sets

Predict best fit and combination of uncertainty sets

Extend set-induced (data-driven) RO to non-i.i.d. data/coefficients (more general
data assumptions to construct more representative sets ⇒ more difficult to derive
a priori probability bounds)
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Conclusion (1)

1. (Reliable) capacitated Facility Location Problem (cFLP) × Multicommodity Flow
Routing (MCF) → cFLRP

2. Hub-Location Problem (HLP) × Location-Routing Problem (LRP) → HLRP

3. Mixed-Integer Programming Model for the Multi-Stage Hub Location Problem →
mHLRP

4. Robust cFLP (variant of)

5. Multi-Period Multicommodity Capacitated Network Design and Routing Problem

Challenges
Modeling-level: multi-layer (combined problems/unified operations), multi-period
(dynamics), robustification (uncertainty),

Computational-level: methods/techniques (exact - heuristics - meta-heuristics)
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