
http:info.iet.unipi.it/~luigi/research.html

Building efficient
dataplanes in software

Luigi Rizzo
Universita` di Pisa, Italy

http:info.iet.unipi.it/~luigi/research.html

Overview

This talk is about fast and efficient software
dataplanes for networking

Key ideas apply to hardware as well

Several misconceptions (user vs kernel, zero copy, hw vs
sw, latency)

Actual systems way more complex than research
prototypes

http:info.iet.unipi.it/~luigi/research.html

Summary

● metrics
● bottleneck identification
● classic I/O versus faster methods
● netmap features

http:info.iet.unipi.it/~luigi/research.html

Metrics

Throughput, latency, CPU efficiency are key metrics

Throughput: units of work per second
 - Bit, byte, packet, segment, transaction ?
 Depends on the problem and layer where you operate

http:info.iet.unipi.it/~luigi/research.html

Throughput

Packet processing devices (switches, firewalls, some
middleboxes) normally care about pps

Other apps and system care for bps (bulk I/O)

Most systems optimize for bps (and use large segments,
to make the problem 2-3 orders of magnitude easier)

→ not a bad idea if possible!

http:info.iet.unipi.it/~luigi/research.html

Latency (and efficiency)

Time to deliver a unit of work from source to
destination.

Two parts of the problem:
1. move data across
2. notify the recipient

#2 often takes 10-50x longer than #1

Many save the work by assuming the recipient is always
spinning to wait for data (CPU efficiency goes down the
drain)

http:info.iet.unipi.it/~luigi/research.html

Bottleneck identification

Our processing chains involve hardware, OS, user
software
● performance bottlenecks may be in any of them
● and also in their interaction
● performance figures vary widely with workload

Understand how the system works before optimizing.

http://info.iet.unipi.it/~luigi/

Example: per packet costs in
Qemu

Left: before our changes
Right: with our changes (including
replacing TAP with VALE switch)

http:info.iet.unipi.it/~luigi/research.html

Bottleneck identification (2)

Do not overestimate hardware

● HW switches usually deliver line rate in all conditions
simpler problem, closed platforms, established testing standards

● Most NICS cannot do line rate with small packets
users unlikely to find out due to OS or application limitations

● more expensive CPUs not always better
multi socket systems have slower memory paths;
OSes often scale badly with many cores

http:info.iet.unipi.it/~luigi/research.html

Reference numbers

Minimum frame size:
64 bytes (data+CRC) + 160 bits framing = 672 bits
● up to 14.88 Mpps on 10 Gbit/s NICs (67.2ns/frame)
● compare with 40+ ns for a L3 cache miss
● 40 Gbit/s NICs are 4x faster

Larger frames are less problematic
● 64 bytes -> 67.2 ns / 14.88 Mpps
● 1500 bytes -> 1200 ns / 0.800 Mpps
● 9000 bytes -> 7200 ns / 0.130 Mpps
● 64K bytes -> 51,200 ns / 0.020 Mpps
Latency can be much larger (500..2000ns)

http:info.iet.unipi.it/~luigi/research.html

Socket performance

Sockets deliver 1-2 Mpps (per core)
● system call
● memory allocation

and copies
● repeated address

lookups
● complex mbuf parsing
● device programming

● splitting to multiple cores not always possible (ordering)
● scaling can be sublinear (resource contention)

http:info.iet.unipi.it/~luigi/research.html

How to improve performance

When you are CPU bound: be more efficient
- remove useless operations
- move work to init-time when possible
- simplify data structures, reduce runtime decisions
- batching

Once you hit other HW limitations:
- optimize access to hardware
- find better hardware!

http:info.iet.unipi.it/~luigi/research.html

OS and network stack bypass

OS bypass: (DPDK, PF_RING, snabbswitch)

“We can do better than the OS”
● expose hardware to userspace
● direct access to HW

But: the OS is useful
● protection
● synchronization
● device independence
Netmap is “network stack bypass”, not OS-bypass

http:info.iet.unipi.it/~luigi/research.html

Netmap goals and history

Goal: build a fast path between NIC and applications
● targeted to raw packet I/O
● userspace for convenience
● robust, easy to use, device independent
Evolution
● jun. 2011: first prototype and FreeBSD release
● feb. 2012: linux release
● jun. 2012: VALE (virtual software switch)
● jan. 2013: Qemu extensions
● dec. 2013: netmap pipes, monitor ports
● apr. 2014: bhyve support, mSwitch
● apr. 2015: ptnetmap (virtual passthrough)
● aug. 2015: Windows release

http:info.iet.unipi.it/~luigi/research.html

netmap ports support, but do not demand,
batching and zero copy
 shared data structures: netmap port

Data structures

protected kernel resources:
NIC, device drivers

http:info.iet.unipi.it/~luigi/research.html

Standard raw packet access

hw + driver

network
stack

user process

hw + driver

socket(...);
bind(...);
read();
write();

socket
bpf
PF_PACKET
PF_RING

300..1000 ns/pkt

http:info.iet.unipi.it/~luigi/research.html

Netmap NIC access

hw + driver

network
stack

user process

hw + driver
EMULATED

fd = open(“/dev/netmap”);
ioctl(fd, NIOCREGIF, “netmap:eth0”);
mmap()

ioctl(), select(), poll(), epoll(), kevent()

200-250 ns/pkt

http:info.iet.unipi.it/~luigi/research.html

Native NIC access

hw + driver

network
stack

user process

hw + driver

NATIVE

fd = open(“/dev/netmap”);
ioctl(fd, NIOCREGIF, “netmap:eth0”);
mmap()

ioctl(), select(), poll(), epoll(), kevent()

~20 ns/pkt

HW: 67.2 ns/pkt
or worse

http:info.iet.unipi.it/~luigi/research.html

VALE switch

hw + driver

network
stack

user process

hw + driver

VALE switch

TX: 50 ns/pkt
RX: 20 ns/pkt

http:info.iet.unipi.it/~luigi/research.html

VALE switch + NIC/host

hw + driver

network
stack

user process

hw + driver

VALE switch

TX: 50 ns/pkt
RX: 20 ns/pkt

http:info.iet.unipi.it/~luigi/research.html

Custom logic, VALE dataplane

hw + driver

network
stack

user process

hw + driver
NATIVE

VALE switch

fn = ovs()
fn = port_demux()
fn = my_fn()

http:info.iet.unipi.it/~luigi/research.html

Netmap pipes

hw + driver

network
stack

hw + driver

VALE switch

TX: 50 ns/pkt
RX: 20 ns/pkt

8-10 ns/pkt
reliable

http:info.iet.unipi.it/~luigi/research.html

Netmap monitor

Can create a port that mirrors traffic from another
netmap port
● can only read
● can decide whether to monitor tx, rx or both
● traffic available only after the master port has

processed it
● excess traffic is dropped

http:info.iet.unipi.it/~luigi/research.html

Port naming

Names identify ports
netmap:eth0 NIC, all queues
netmap:eth0-3 NIC, queue #3
netmap:eth0^ host port
netmap:eth0* all queue and host port
valeXX:yy VALE port on switch XX
valeXX:yy{NN pipe, master side
valeXX:yy}NN pipe, slave side
netmap:eth0+[z][rt] monitor port (zero copy, tx, rx)

http:info.iet.unipi.it/~luigi/research.html

Isolation

Ports can be allocated to same or different memory
regions. Defaults:

● all NIC/host ports in the same region
(in the future: separate memory regions)

● each VALE port in a separate region

● netmap pipes share memory according to the
basename

http:info.iet.unipi.it/~luigi/research.html

Performance

Nota bene:
● these are best-case, single core numbers, computed

with moderately large batches

● ns/pkt is a better metric than Mpps (additive)

● at the rates of interest, memory accesses can
change performance a lot

● still important to know what the limit is

http:info.iet.unipi.it/~luigi/research.html

Performance (2)

Basic I/O (netmap in OR out, device): 20 ns/pkt
● 14.88 Mpps, one core, 900 MHz, 64 byte frames
● (no data touching)
● many NICs cannot do line rate due to their own hw

limitations
● PCIe bus accesses also problematic with unaligned

accesses

http:info.iet.unipi.it/~luigi/research.html

Performance (3)

VALE switch (one data copy in the switch)
● 50 ns/pkt (20 Mpps), 64 bytes
● 250ns/pkt (4 Mpps, 50 Gbit/s), 1500 bytes
● scales to memory bandwidth with multiple senders

netmap pipes (point to point, zero copy)
● 8-10 ns/pkt (100-120 Mpps)
● mostly insensitive to packet size

http:info.iet.unipi.it/~luigi/research.html

Application performance
Per packet time is sum of application and I/O time
● I/O intensive apps have the greatest benefits
● CPU-intensive apps see less gain
● same for DPDK, PF_RING-DNA etc.

Examples:
● netmap-click: 10 Mpps
● netmap-libpcap: 10 Mpps
● netmap-OVS: 3-4 Mpps
● netmap-ipfw: 6 Mpps (filtering), 2 Mpps (dummynet)
● VM-VM: 4-6 Mpps (Qemu/bhyve, netmap mode)
● VM-host: 6-12 Mpps (Qemu/bhyve)
● VM-passthrough: same as bare metal

http://info.iet.unipi.it/~luigi/

Application design strategy

When I/O was an unsurmountable cost:
+ split traffic, process in parallel
+ multiqueue and flow steering come to help
- reordering ? centralized data structures ?

With fast I/O:
+ a single thread does everything, if possible
+ otherwise build pipelines
+ natural approach e.g. for VM networking
+ easily solves reordering and coherency
- more memory pressure
- synchronization between pipeline stages

http:info.iet.unipi.it/~luigi/research.html

Network I/O in VMs

virtualization platforms have pipelines
with stages communicating through
queues and some synchronization
mechanism

Start/stop costs often dominate
individual packet processing costs

http:info.iet.unipi.it/~luigi/research.html

Producer-consumer interaction

WP, WC processing time

NP, NC notification

SP, SC start time

Depending on the values we have different regimes,
a faster stage may slow down the entire pipeline.

http:info.iet.unipi.it/~luigi/research.html

Effects of pipeline imbalance

Time per packet (lower is better) is optimal when
producer and consumer are balanced
- slow down the fast stage to improve throughput!
- see our work at ANCS’16

http://info.iet.unipi.it/~luigi/

Network I/O in VMs

Individual packet I/O require interrupts and “vm exits”
to talk to the switch in the host
- both are 10-50x more expensive than on bare metal

Amortize them with “paravirtualized” device models and
drivers:
- establish a shared memory channel between guest

and host
- first interaction pays the vm exit cost, then a thread

spins for a while waiting for events
- virtio, vmxnet and other devices use this mechanism

http://info.iet.unipi.it/~luigi/

Hypervisor netmap support

(single core, best case, large batches, aligned packets, ...)
QEMU: up to 6-8 Mpps G-G, 12 Mpps G-H
● basic netmap support in-tree (3-4 Mpps)
● more flag, PV netmap in guest, indirect buffers not

committed yet
bhyve: ~8 Mpps G-H
● full netmap and virtio support
Xen: 6-10 Mpps G-H
● first approach, replace xen rings with VALE
● current approach: netmap extension for

netfront/netback
● use VALE in DOM-0

http://info.iet.unipi.it/~luigi/

Virtual netmap passthrough

The conventional frontend/backend architecture still
requires data copies

PCI passthrough is a popular approach to achieve bare-
metal performance in VMs
- bound to specific HW availability
- communication goes through the PCIe bus

Better option: use passthrough on netmap ports

http://info.iet.unipi.it/~luigi/

ptnetmap performance

http://info.iet.unipi.it/~luigi/

ptnetmap throughput

http://info.iet.unipi.it/~luigi/

RTT latency, blocking

http://info.iet.unipi.it/~luigi/

RTT latency, non blocking

http://info.iet.unipi.it/~luigi/

Chained VM performance

http:info.iet.unipi.it/~luigi/research.html

Conclusions and current work

Network I/O is essentially a solved problem
- now look at application design: parallel vs pipeline
- design to amortize communication latency
- example: PSPAT, packet scheduling with parallel

transmission (see my research page)

Move away from packet abstraction
- only useful on the link. VMs and VNFs use streams.

http:info.iet.unipi.it/~luigi/research.html

Acknowledgements

Funding and support (over time):
Intel Research, EU FP7 (Change, Openlab), ACM,
Netapp, NEC, EU H2020 (SSICLOPS)

Developers:
Luigi Rizzo, Giuseppe Lettieri, Michio Honda,
Matteo Landi, Gaetano Catalli, Vincenzo Maffione,
Stefano Garzarella, Alessio Faina

